
- 1 -

T.Y. Diploma : Sem. V
[CO/CM/IF]

Software Engineering
Time: 3 Hrs.] Prelim Question Paper Solution [Marks : 100

Q.1 Attempt any FIVE of the following : [20]
Q.1(a) Explain changing nature of software. [4]
Ans.: Changing Nature of Software : Whenever one starts with the software implementation

changes can occur any time. The software can be change due to any reason. But while
implementing software one should be ready for such changes as if changes occur there shall
not be drastic change in the system. The development team should manage to
implement/mould the implemented system so that the changes can be reflected and the
user requirements meet. When change occur the team look for the current status of the
system and from there onwards they starts implementing a system with new requirements
of a user or changes which is to be implemented in a system.

Q.1(b) What are communication principles? Explain their meaning. [4]
Ans.: Principle 1. Listen. Try to focus on the speaker’s words, rather than formulating your

response to those words. Ask for clarification if something is unclear, but avoid constant
interruptions. Never become contentious in your words or actions (e.g., rolling your eyes or
shaking your head) as a person is talking.

Principle 2. Prepare before you communicate. Spend the time to understand the problem
before you meet with others. If necessary, do some research to understand business
domain. If you have responsibility for conducting a meeting, prepare an agenda in advance of
the meeting.

Principle 3. Someone should facilitate the activity. Every communication meeting should
have a leader (a facilitator) to keep the conversation moving in a productive direction, to
mediate any conflict that does occur, and to ensure that other principles are followed.

Principle 4. Face-to-face communication is best. Face to face communication is always
makes sense. It usually works better when some other representation of the relevant
information is present. For example, a participant may create a drawing document that
serves as a focus for discussion.

Principle 5. Take notes and document decisions. Things have a way of falling into the
cracks. Someone participating in the communication should serve as a “recorder” and write
down all important points and decisions.

Principle 6. Strive for collaboration.
Collaboration occurs when the collective knowledge of members of the team is used to
describe product or system functions or features. Each small collaboration serves to build
trust among team members and creates a common goal for the team.

Principle 7. Stay focused; modularize your discussion.
The more people involved in any communication, the more likely that discussion will bounce
from one topic to the next. The facilitator should keep the conversations modular; leaving
one topic only after it has been resolved

Principle 8. If something is unclear, draw a picture: Verbal communication goes only so
far. A sketch or drawing can often provide clarity when words fail to do the job.

Vidyalankar : T.Y. Diploma  SE

- 2 -

Principle 9. (a) Once you agree to something, move on. (b) If you can’t agree to
something, move on. (c) If a feature or function is unclear and cannot be clarified at
the moment, move on. Communication, like any software engineering activity, takes time.
Rather than iterating endlessly, the people who participate should recognize that many
topics require discussion and that “moving on” is sometimes the best way to achieve
communication agility.

Principle 10. Negotiation is not a contest or a game. It works best when both parties
win. There are many instances in which you and other stakeholders must negotiate functions
and features, priorities, and delivery dates. If the team has collaborated well, all parties
have a common goal. Still, negotiation will demand compromise from all parties.

Q.1(c) List four objectives of testing. [4]
Ans.: List of 4 objectives of testing

1. Testing is a process of executing a program with the intent of finding an error.
2. A good test case is one that has a high probability of finding an as-yet undiscovered

error.
3. A successful test is one that uncovers an as-yet-undiscovered error
4. All tests should be traceable to customer requirements.
5. A good test has a high probability of finding an error.
6. A good test is not redundant.
7. A good test should be ―best of breed.
8. A good test should be neither too simple nor too complex.
OR
1. Finding programming defects.
2. Gaining confidence in and providing information about the level of quality.
3. To make sure that the end result meets the business and user requirements.
4. To ensure that it satisfies SRS that is System Requirement Specifications.

Q.1(d) Explain RAD model with its advantages and disadvantages. [4]
Ans.: The RAD Model:

Prelim Paper Solution

- 3 -

Rapid Application Development (RAD) is a modern software process model that emphasizes a
short development cycle. The RAD Model is a “high-speed” adaptation of the waterfall
model, in which rapid development is achieved by using a component based construction
approach. If requirements are well understood and project scope is considered, the RAD
process enables a development team to create a “Fully Functional System” within a very
short period of time (e.g. 60 to 90 days).

One of the distinct features of RAD model is the possibility of cross life cycle activities
which will be assigned to teams, teams #1 to team #n leading to each module getting
developed almost simultaneously.

This approach is very useful if the business application requirements are modularized as
function to be completed by individual teams and finally to integrate into a complete system.
As such compared to waterfall model the team will be of larger size to function with proper
coordination.

RAD model distributes the analysis and construction phases into a series of short iterative
development cycles. The activities of each phase per team are Business modeling, Data
modeling and process modeling.

This model is useful for projects with possibility of modularization.
RAD may fail if modularization is difficult. This model should be used if domain experts are
available with relevant business knowledge.

Advantages:
1. Changing requirements can be accommodated and progress can be measured.
2. Powerful RAD tools can reduce development time.
3. Productivity with small team in short development time and quick reviews, risk control

increases reusability of components, better quality.
4. Due to risks in new approach only modularized systems are recommended through RAD.
5. Suitable for scalable component based systems.

Disadvantages:
1. Success of RAD model depends on strong technical team expertise and skills.
2. Highly skilled developers needed with modeling skills.
3. User involvement throughout life cycle. If developers &customers are not committed to

the rapid fire activities necessary to complete the System in a much-abbreviated time
frame, RAD projects will fail.

4. May not be appropriate for very large scale systems where the technical risks are high.

Q.1(e) What is alpha-beta testing? [4]
Ans.: Alpha Testing: The alpha test is conducted at the developer's site by a customer. The

software is used in a natural setting with the developer "looking over the shoulder" of the
user and recording errors and usage problems. Alpha tests are conducted in a controlled
environment.
Beta Testing: The beta test is conducted at one or more customer sites by the end-user of
the software. Unlike alpha testing, the developer is generally not present. Therefore, the
beta test is a "live" application of the software in an environment that cannot be controlled
by the developer. The customer records all problems (real or imagined) that are
encountered during beta testing and reports these to the developer at regular intervals.
As a result of problems reported during beta tests, software engineers make modifications
and then prepare for release of the software product to the entire customer base.

Vidyalankar : T.Y. Diploma  SE

- 4 -

Q.1(f) Describe six sigma for software engineering. [4]
Ans.: Six Sigma is the most widely used strategy for statistical quality assurance in industry

today. Originally popularized by Motorola in the 1980s, the Six Sigma strategy ―is a
rigorous and disciplined methodology that uses data and statistical analysis to measure and
improve a company‘s operational performance by identifying and eliminating defects‘ in
manufacturing and service-related processes. The term Six Sigma is derived from six
standard deviations—instances (defects) per million occurrences—implying an extremely
high quality standard. The Six Sigma methodology defines three core steps:
 Define customer requirements and deliverables and project goals via well-defined

methods of customer communication.
 Measure the existing process and its output to determine current quality performance

(collect defect metrics).
 Analyze defect metrics and determine the vital few causes.

If an existing software process is in place, but improvement is required, Six Sigma suggests
two additional steps:
 Improve the process by eliminating the root causes of defects.
 Control the process to ensure that future work does not reintroduce the causes of

defects.

These core and additional steps are sometimes referred to as the DMAIC (define, measure,
analyze, improve, and control) method. If an organization is developing a software process
(rather than improving an existing process), the core steps are augmented as follows:
 Define customer requirements and deliverables and project goals via well-defined

methods of customer communication.
 Measure the existing process and its output to determine current quality performance

(collect defect metrics).
 Analyze defect metrics and determine the vital few causes.
 Design the process to (1) avoid the root causes of defects and (2) to meet customer

requirements.
 Verify that the process model will, in fact, avoid defects and meet customer

requirements.
This variation is sometimes called the DMADV (define, measure, analyze, design, and verify)
method.

Q.1(g) Explain analysis modeling. [4]
Ans.: The analysis model and requirements specification provide a means for assessing quality

once the software is built. Requirements analysis results in the specification of software‘s
operational characteristics.
The analysis model is a bridge between the system description and the design model.
Objectives Analysis model must achieve three primary objectives: Describe Customer needs
Establish a basis for software design Define a set of requirements that can be validated
once the software is built.
Analysis Rules of Thumb
 The model should focus on requirements that are visible within the problem or business

domain. The level of abstraction should be relatively high.
 Each element of the analysis model should add to overall understanding of software

requirements and provide insight into the information, function, and behavior domains of
the system.

 Delay consideration of infrastructure and other non-functional models until design.
 For example, a database may be required, but the classes necessary to implement it, the

functions required to access it, and the behavior that will be exhibited as it is used
should be considered only after problem domain analysis has been completed.

 Minimize coupling throughout the system.

Prelim Paper Solution

- 5 -

 The level of interconnectedness between classes and functions should be reduced to a
minimum.

 Be certain that the analysis model provides value to all stakeholders.
 Each constituent has its own use for the model.
 Keep the model as simple as it can be.
 Ex: Don't add additional diagrams when they provide no new information.
 Only modeling elements that have values should be implemented.

Q.2 Attempt any FOUR of the following : [16]
Q.2(a) Explain the waterfall model. [4]
Ans.:

The waterfall model is a traditional method, sometimes called the classic life cycle. This is
one of the initial models. As the figure implies stages are cascaded and shall be developed
one after the other. It suggests a systematic, sequential approach to software development
that begins with customer specification of requirements and progresses through,
communication, planning, modeling construction and deployment.
In other words one stage should be completed before the other begins. Hence, when all the
requirements are elicited by the customer, analyzed for completeness and consistency,
documented as per requirements, the development and design activities commence. One of
the main needs of this model is the user‘s explicit prescription of complete requirements at
the start of development. For developers it is useful to layout what they need to do at the
initial stages. Its simplicity makes it easy to explain to customers who may not be aware of
software development process. It makes explicit with intermediate products to begin at
every stage of development. One of the biggest limitation is it does not reflect the way
code is really developed. Problem is well understood but software is developed with great
deal of iteration. Often this is a solution to a problem which was not solved earlier and
hence software developers shall have extensive experience to develop such application; as
neither the user nor the developers are aware of the key factors affecting the desired
outcome and the time needed. Hence at times the software development process may
remain uncontrolled. Today software work is fast paced and subject to a never-ending
stream of changes in features, functions and information content. Waterfall model is
inappropriate for such work. This model is useful in situation where the requirements are
fixed and work proceeds to completion in a linear manner.

Q.2(b) Explain modeling practice in software engineering with principles. [4]
Ans.: We create models to gain a better understanding of the actual entity to be built.

 Principle 1. The primary goal of the software team is to build software, not create
models.
Agility means getting software to the customer in the fastest possible time. Models
that make this happen are worth creating, but models that slow the process down or
provide little new insight should be avoided.

 Principle 2. Travel light—don’t create more models than you need.
Every model that is created must be kept up-to-date as changes occur. More
importantly, every new model takes time that might otherwise be spent on construction
(coding and testing). Therefore, create only those models that make it easier and faster
to construct the software.

Vidyalankar : T.Y. Diploma  SE

- 6 -

 Principle 3. Strive to produce the simplest model that will describe the problem or
the software.

 Don’t overbuild the software by keeping models simple, the resultant software will also
be simple. The result is software that is easier to integrate, easier to test, and easier
to maintain (to change). In addition, simple models are easier for members of the
software team to understand and critique, resulting in an ongoing form of feedback that
optimizes the end result.

 Principle 4. Build models in a way that makes them amenable to change.
Assume that your models will change, but in making this assumption don’t get sloppy. For
example, since requirements will change, there is a tendency to give requirements
models short. Why? Because you know that they’ll change anyway.
The problem with this attitude is that without a reasonably complete requirements
model, you’ll create a design (design model) that will invariably miss important
functions and features.

 Principle 5. Be able to state an explicit purpose for each model that is created.
Every time you create a model, ask yourself why you’re doing so. If you can’t provide
solid justification for the existence of the model, don’t spend time on it.

 Principle 6. Adapt the models you develop to the system at hand.
It may be necessary to adapt model notation or rules to the application; for example, a
video game application might require a different modeling technique than real-time,
embedded software that controls an automobile engine.

 Principle 7. Try to build useful models, but forget about building perfect models.
When building requirements and design models, a software engineer reaches a
point of diminishing returns. That is, the effort required to make the mod el
absolutely complete and internally consistent is not worth the benefits of these
properties. Am I suggesting that modeling should be sloppy or low quality? The
answer is “no.” But modeling should be conducted with an eye to the next
software engineering steps. Iterating endlessly to make a model “perfect” does not
serve the need for agility.

 Principle 8. Don’t become dogmatic about the syntax of the model.
If it communicates content successfully, representation is secondary. Although
everyone on a software team should try to use consistent notation during modeling, the
most important characteristic of the model is to communicate information that enables
the next software engineering task. If a model does this successfully, incorrect syntax
can be forgiven.

 Principle 9. If your instincts tell you a model isn’t right even though it seems okay
on paper, you probably have reason to be concerned. If you are an experienced
software engineer, trust your instincts. Software work teaches many lessons—some of
them on a subconscious level. If something tells you that a design model is doomed to
fail (even though you can’t prove it explicitly), you have reason to spend additional time
examining the model or developing a different one.

 Principle 10. Get feedback as soon as you can.
Every model should be reviewed by members of the software team. The intent of these
reviews is to provide feedback that can be used to correct modeling mistakes, change
misinterpretations, and add features or functions that were inadvertently omitted.

Q.2(c) Explain principle of scheduling. [4]
Ans.: Compartmentalization: The project must be compartmentalized into a number of

manageable activities, actions and tasks; both the product and the process are decomposed.
Interdependency: The interdependency of each compartmentalized activity, action or task
must be determined. Some tasks must occur in sequence while others can occur in parallel.
Some actions or activities cannot commence until the work product produced by another is
available.

Prelim Paper Solution

- 7 -

Time allocation: Each task to be scheduled must be allocated some number of work units.
In addition, each task must be assigned a start date and a completion date that is a function
of the interdependencies.
Start and stop dates are also established based on whether work will be conducted on a
full-time or part-time basis.

Effort validation: Every project has a defined number of people on the team. As time
allocation occurs, the project manager must ensure that no more than the allocated number
of people has been scheduled at any given time.

Defined responsibilities: Every task that is scheduled should be assigned to a specific team
member.

Defined outcomes: Every task that is scheduled should have a defined outcome for
software projects such as a work product or part of a work product. Work products are
often combined in deliverables.

Defined milestones: Every task or group of tasks should be associated with a project
milestone. A milestone is accomplished when one or more work products has been reviewed
for quality and has been approved.

Q.2(d) Describe integration testing approach. [4]
Ans.: Integration testing is a systematic technique for constructing the software architecture

while at the same time conducting tests to uncover errors associated with interfacing. The
objective is to take unit-tested components and build a program structure that has been
dictated by design. There are two approaches used in Integration Testing as follows:
Top-down integration. Top-down integration testing is an incremental approach to
construction of the software architecture. Modules are integrated by moving downward
through the control hierarchy, beginning with the main control module. Modules subordinate
(and ultimately subordinate) to the main control module are incorporated into the structure
in either a depth-first or breadth-first manner.

Bottom-up integration. Bottom-up integration testing, as its name implies, begins
construction and testing with atomic modules (i.e., components at the lowest levels in the
program structure). Because components are integrated from the bottom up, the
functionality provided by components subordinate to a given level is always available and the
need for stubs is eliminated.

Vidyalankar : T.Y. Diploma  SE

- 8 -

Q.2(e) Explain Mccalls quality factor. [4]
Ans.:

 Correctness. The extent to which a program satisfies its specification and fulfills the
customer’s mission objectives.

 Reliability. The extent to which a program can be expected to perform its intended
function with required precision.

 Efficiency. The amount of computing resources and code required by a program to
perform its function.

 Integrity. Extent to which access to software or data by unauthorized persons can be
controlled of a program

 Maintainability. Effort required to locate and fix an error in a program.
 Flexibility. Effort required to modify an operational program.
 Testability. Effort required to test a program to ensure that it performs its intended

function.
 Portability. Effort required to transfer the program from one hardware and/or

software system environment to another.
 Reusability. Extent to which a program [or parts of a program] can be reused in other

applications—related to the packaging and scope of the functions that the program
performs.

 Interoperability. Effort required to couple one system to another.

Prelim Paper Solution

- 9 -

Q.2(f) What is an object oriented analysis? [4]
Ans.: Object-oriented Analysis focuses on the definition of classes and the manner in which they

collaborate with one another to effect customer requirements.

The intent is to define all classes, relationship, behavior associated with them, that are to
the problem to be solved. To achieve this following task should occur.
Task 1 : Basic user requirements must be communicated between user and developer.
Task 2 : Classes must be identified (i.e. attributes, methods defined)
Task 3 : A class hierarchy is defined
Task 4 : Object- object relationships (object connection) should be represented.
Task 5 : Object behavior must be modeled.
Task 6 : Task-1 to Task-5 is reapplied iteratively till model is complete.

Q.3 Attempt any FOUR of the following : [16]
Q.3(a) Difference between prescriptive and agile process model. [4]
Ans.:

 Prescriptive Process Model Agile Process Model
1. Product Oriented process. Process and

technology are crucial
People oriented process. Favors people
over technology

2. A traditional approach for software
product development

It is an recent approach for Project
Management

3. Traditional and modern approaches using
generic process framework activities
with medium to large cycle time

Cycle-time reduction is most important

4. Focus is on tasks, tools such as
estimating, scheduling, tracking and
 control

Model focuses on modularity, iterative,
time bound, parsimony, adaptive,
incremental convergent, collaborative
approach

5. Models include Waterfall, Incremental,
Prototype, RAD and spiral

Agile process model uses the concept of
Extreme Programming

Q.3(b) Describe any two core principles of software engineering. [4]
Ans.: The First Principle: The Reason It All Exists

A software system exists for one reason: To provide value to its users. All decisions should
be made with this in mind. Before specifying a system requirement, before noting a piece of
system functionality, before determining the hardware platforms or development processes,
ask yourself questions such as: "Does this add real VALUE to the system?" If the answer is
"no", don't do it. All other principles support this one.

Vidyalankar : T.Y. Diploma  SE

- 10 -

The Second Principle: KISS (Keep It Simple, Stupid!)
There are many factors to consider in any design effort. All design should be as simple as
possible, but no simpler. This facilitates having a more easily understood, and easily
maintained system.

The Third Principle: Maintain the Vision
A clear vision is essential to the success of a software project. Without one, a project
almost unfailingly ends up being "of two [or more] minds" about itself.
Compromising the architectural vision of a software system weakens and will eventually
break even the most well designed systems. Having an empowered Architect who can hold
the vision and enforce compliance helps ensure a very successful software project.

The Fourth Principle: What You Produce, Others Will Consume.
Seldom is an industrial-strength software system constructed and used in a vacuum. In
some way or other, someone else will use, maintain, document, or otherwise depend on being
able to understand your system. So, always specify, design, and implement knowing someone
else will have to understand what you are doing. The audience for any product of software
development is potentially large. Specify with an eye to the users.

Design, keeping the implementers in mind. Code with concern for those that must maintain
and extend the system. Someone may have to debug the code you write, and that makes
them a user of your code. Making their job easier adds value to the system.

The Fifth Principle: Be Open to the Future
A system with a long lifetime has more value. In today's computing environments, where
specifications change on a moment's notice and hardware platforms are obsolete when just
a few months old, software lifetimes are typically measured in months instead of years.
However, true "industrial-strength" software systems must endure far longer.
To do this successfully, these systems must be ready to adapt to these and other changes.
Systems that do this successfully are those that have been designed this way from the
start. Never design yourself into a corner. Always ask "what if ", and prepare for all
possible answers by creating systems that solve the general problem, not just the specific
one. This could very possibly lead to the reuse of an entire system.

The Sixth Principle: Plan Ahead for Reuse
Reuse saves time and effort. Achieving a high level of reuse is arguably the hardest goal to
accomplish in developing a software system. The reuse of code and designs has been
proclaimed as a major benefit of using object-oriented technologies. However, the return on
this investment is not automatic. To leverage the reuse possibilities that OO programming
provides requires forethought and planning. There are many techniques to realize reuse at
every level of the system development process. Those at the detailed design and code level
are well known and documented. New literature is addressing the reuse of design in the
form of software patterns. However, this is just part of the battle.
Communicating opportunities for reuse to others in the organization is paramount. How can
you reuse something that you don't know exists? Planning ahead for reuse reduces the cost
and increases the value of both the reusable components and the systems into which they
are incorporated.

Seventh Principle: Think!
This last Principle is probably the most overlooked. Placing clear, complete thought before
action almost always produces better results. When you think about something, you are
more likely to do it right. You also gain knowledge about how to do it right again. If you do
think about something and still do it wrong, it becomes valuable experience. A side effect of
thinking is learning to recognize when you don t know something, at which point you can

Prelim Paper Solution

- 11 -

research the answer. When clear thought has gone into a system, value comes out. Applying
the first six Principles requires intense thought, for which the potential rewards are
enormous.

Q.3(c) What is test plan? [4]
Ans.: Test plan: A document describing the scope, approach, resources and schedule of intended

test activities. It identifies amongst others test items, the features to be tested, the
testing tasks, who will do each task, degree of tester independence, the test environment,
the test design techniques and entry and exit criteria to be used, and the rationale for
their choice, and any risks requiring contingency planning. It is a record of the test planning
process master test plan: A test plan that typically addresses multiple test levels. phase
test plan: A test plan that typically addresses one test phase.

Q.3(d) Differentiate between Black Box Testing and White Box Testing. [4]
Ans.:

 Black Box Testing White Box Testing
Definition Black Box Testing is a software

testing method in which the internal
structure/design/ implementation
of the item being tested is NOT
known to the tester

White Box Testing is a software
testing method in which the
internal structure/ design/
implementation of the item being
tested is known to the tester.

Levels
Applicable To

Mainly applicable to higher levels of
testing: Acceptance Testing System
Testing

Mainly applicable to lower levels of
testing: Unit Testing Integration
Testing

Responsibility Generally independent Software
Testers

Generally Software Developers

Programming
Knowledge

Not Required Required

Implementation
Knowledge

Not Required Required

Basis for Test
Cases

Requirement
Specifications

Detail Design

Diagram

Q.3(e) Explain concept of data modeling with

(i) data object (ii) Data Attributes
(iii) Cardinality (iv) Modality

[4]

Ans.: (i) Data objects
 A "data object" is a representation of almost any composite information that must be

understood by software. By composite information, something that has a number of
different properties or attributes.

 Example:
 "Width" (a single value) would not be a valid data object, but dimensions (incorporating

height, width and depth) could be defined as an object.

Vidyalankar : T.Y. Diploma  SE

- 12 -

 (ii) Attributes
 Attributes define the properties of a data object and take one of three different

characteristics. They can be used to:
 1) Name an instance of the data objects,
 2) Describe the instance,
 3) Make reference to another instance in another table.
 Example:
 attributes must be defined as "identifier". Referring to data object "car", a reasonable

identifier or attribute might be the "ID No"," Color".

(iii) Cardinality
 Cardinality is the specification of the number of occurrences of one object that can be

related to the number of occurrences of another object. Cardinality is usually
expressed as simply 'one' or 'many'.

 Example:
 One object can relate to only one other object (a 1:1 relationship);
 One object can relate to many other objects (a 1: N relationship);
 Some number of occurrences of an object can relate to some other number of

occurrences of another object (an M: N relationship);

 (iv) Modality

1) A modality of relationship is zero if occurrence of relationship is optional and
modality of relationship is 1 if occurrence of relationship is mandatory (i.e.
compulsory).

2) The modality specifies the minimum number of relationship.
3) Shows maximum 1 to minimum or compulsory 1.
4) Example  exactly one (maximum 1 and minimum 1) room is occupied by zero or many

(maximum many and minimum 0) employees.

Q.3(f) What is SPM? Why is it needed? [4]
Ans.: The Software Project Management includes basic function such as scoping, planning,

estimating, scheduling, organizing, directing, coordinating, controlling and closing. The
effective Software Project Management focuses on the four P‘s via People, Product, Process
and Project.
Project management software caters to the following primary functions:
1. Project planning : To define a project schedule, a project manager (PM) may use the

software to map project tasks and visually describe task interactions.
2. Task management : Allows for the creation and assignment of tasks, deadlines and

status reports.
3. Document sharing and collaboration : Productivity is increased via a central document

repository accessed by project stakeholders.
4. Calendar and contact sharing : Project timelines include scheduled meetings, activity

dates and contacts that should automatically update across all PM and stakeholder
calendars.

5. Bug and error management : Project management software facilitates bug and error
reporting, viewing, notifying and updating for stakeholders.

6. Time tracking : Software must have the ability to track time for all tasks maintain
records for third-party consultants.

Q.4 Attempt any FOUR of the following : [16]
Q.4(a) Explain the concept of software requirement specification. [4]
Ans.: A software requirements specification (SRS) is a complete description of the behavior of

the system to be developed. It includes a set of use cases describe all of the interactions
that the users will have with the software. In addition to use cases, the SRS contains
functional requirements and nonfunctional requirements. Functional requirements define the

Prelim Paper Solution

- 13 -

internal workings of the software: that is, the calculations, technical details, data
manipulation and processing, and other specific functionality that shows how the use cases
are to be satisfied. Non-functional requirements impose constraints on the design or
implementation (such as performance requirements, quality standards, or design
constraints).

The purpose of SRS document is providing a detailed overview of software product, its
parameters and goals. SRS document describes the project's target audience and its user
interface, hardware and software requirements. It defines how client, team and audience
see the product and its functionality.

The importance of standard template for SRS documents:
Establish the basis for agreement between the customers and the suppliers on what the
software product is to do. The complete description of the functions to be performed by
the software specified in the SRS will assist the potential users to determine if the
software specified meets their needs or how the software must be modified to meet their
needs. Reduce the development effort. The preparation of the SRS forces the various
concerned groups in the customer's organization to consider rigorously all of the
requirements before design begins and reduces later redesign, recoding, and retesting.

Careful review of the requirements in the SRS can reveal omissions, misunderstandings, and
inconsistencies early i/p the development cycle when these problems are easier to correct.
Provide a basis for estimating costs and schedules. The description of the product to be
developed as given in the SRS is a realistic basis for estimating project costs and can be
used to obtain approval for bids or price estimates.

Provide a baseline for validation and verification. Organizations can develop their validation
and Verification plans much more productively from a good SRS. As a part of the
development contract, the SRS provides a baseline against which compliance can be
measured.

Facilitate transfer. The SRS makes it easier to transfer the software product to new users
or new machines. Customers thus find it easier to transfer the software to other parts of
their organization, and suppliers find it easier to transfer it to new customers.
Serve as a basis for enhancement. Because the-SRS discusses the product but not the
project that developed it, the SRS serves as a basis for later enhancement of the finished
product. The SRS may need to be altered, but it does provide a foundation for continued
production evaluation.

Q.4(b) Explain characteristics of software testing. [4]
Ans.: 1. To perform effective testing, a software team should conduct effective Formal

Technical Reviews (FTRs) using which many errors are eliminated before testing
2. Testing begins at the component level and works “outward” toward the integration of

the entire computer-based system.
3. Different testing techniques are appropriate for different software engineering

approaches and at different points in time.
4. Testing is conducted by the developer of the software and (for large projects) an

independent test group.
5. Testing and debugging are different activities, but debugging must be accommodated
 in any testing strategy

Vidyalankar : T.Y. Diploma  SE

- 14 -

Q.4(c) State eight benefit of ISO standards. [4]
Ans.: 1. Well defined and documented procedures improve the consistency of output.

2. Quality is constantly measured.
3. Procedures ensure corrective action is taken whenever defects occur.
4. Defect rates decrease.
5. Defects are caught earlier and are corrected at a lower cost.
6. Defining procedures identifies current practices that are obsolete or inefficient.
7. Documented procedures are easier for new employees to follow.
8. Organizations retain or increase market share, increasing sales or revenues.
9. Improved product reliability.
10. Better process control and flow.
11. Better documentation of processes.
12. Greater employee quality awareness.
13. Reductions in product scrap, rewords and rejections.

Q.4(d) Explain DFD with example. [4]
Ans.: Data Flow Diagram (DFD) is a graphical representation of how data is actually flowing within

system. It gives clear idea about which module requires what data as an input and what will
be the output of that module. Generally DFD has several levels; higher the level better
understanding about the system can achieve. First level of DFD is known as Context level or
Level 0 which gives overall working of System. Level 1 gives modularize representation of
system containing primary modules of system. From Level 2 onwards a designer starts
revisiting each and every module to go in depth analysis of system which contains smaller
functions to be performed by every module.

Example:

Considering the Safe Home product, a level 0 DFD for the system is shown in Figure. The
primary external entities (boxes) produce information for use by the system and consume
information generated by the system. The labeled arrows represent data objects or data
object type hierarchies. For example, user commands and data encompass all configuration
commands, all activation/deactivation commands, all miscellaneous interactions, and all data
that are entered to qualify or expand a command.

Q.4(e) Explain the concept of Gantt chart. [4]
Ans.: When creating a software project schedule, software team begins with a set of tasks (the

work breakdown structure). If automated tools are used, the work breakdown is input as a
task network or task outline. Effort, duration, and start date are then input for each task.
In addition, tasks may be assigned to specific individuals.

As a consequence of this input, a Gantt chart, also called a time-line chart, is generated. A
Gantt chart can be developed for the entire project. Alternatively, separate charts can be
developed for each project function or for each individual working on the project.

Prelim Paper Solution

- 15 -

Figure below illustrates the format of a Gantt chart. It depicts a part of a software
project schedule that emphasizes the concept scoping task for a word-processing (WP)
software product. All project tasks are listed in the left-hand column. The horizontal bars
indicate the duration of each task. When multiple bars occur at the same time on the
calendar, task concurrency is implied. The diamonds indicate milestones.

Q.4(f) For library management system draw level 0 and level 1 DFD. [4]
Ans.:

DFD Level 0 for Library Management System

Vidyalankar : T.Y. Diploma  SE

- 16 -

DFD Level 1 for Library Management System

Q.5 Attempt any TWO of the following : [16]
Q.5(a) What is software? What are its characteristics? [8]
Ans.: Software is

(1) Instructions (computer programs) that when executed provide desired function and
performance,

(2) Data structures that enable the programs to adequately manipulate information, and
(3) Documents that describe the operation and use of the programs

Software is written to handle an Input – Process – Output system to achieve predetermined
goals. Software is logical rather than a physical system element.

SOFTWARE CHARACTERISTICS :
a) Software is developed or engineered; it is not manufactured in the classical sense.

 Although some similarities exist between software development and hardware
manufacture, the two activities are fundamentally different.

 In both activities, high quality is achieved through good design, but the
manufacturing phase for hardware can introduce quality problems that are
nonexistent (or easily corrected) for software.

 Both activities are dependent on people, but the relationship between people applied
and work accomplished is entirely different.

 Software costs are concentrated in engineering. This means that software projects
cannot be managed as if they were manufacturing projects.

b) Software costs are concentrated in engineering. This means that software projects

cannot be managed as if they were manufacturing projects.
 Software is not susceptible to the environmental maladies that cause hardware to

wear out.

Prelim Paper Solution

- 17 -

 In theory, therefore, the failure rate curve for software should take the form of
the “idealized curve” shown in the figure.
Undiscovered defects will cause high failure rates early in the life of a program.
However, these are corrected (ideally, without introducing other errors) and the
curve flattens as shown.

 The idealized curve is a gross oversimplification of actual failure models for
software. However, the implication is clear—software doesn't wear out. But it does
deteriorate! This seeming contradiction can best be explained by considering the
“actual curve” shown in Figure. During its life, software will undergo change
(maintenance). As changes are made, it is likely that some new defects will be
introduced, causing the failure rate curve to spike as shown in Figure.

 Before the curve can return to the original steady-state failure rate, another
change is requested, causing the curve to spike again. Slowly, the minimum failure
rate level begins to rise—the software is deteriorating due to change.

c) Although the industry is moving toward component- based assembly, most software

continues to be custom built.
 The reusable components have been created so that the engineer can concentrate on

the truly innovative elements of a design, that is, the parts of the design that represent
something new.

 In the software world, it is something that has only begun to be achieved on a broad
scale. A software component should be designed and implemented so that it can be
reused in many different programs.

Q.5(b) What are major task of requirement engineering? [8]
Ans.: Requirements engineering tasks

1. Inception: Inception means beginning. It is usually said that requirement engineering is
a―communication intensive activity. The customer and developer meet and they the
overall scope and nature of the problem statements. By having proper inception phase
the developer will have clear idea about the system and as a result of that better
understanding of a system can be achieved. Once the system is clear to the developer
they can implement a system with better efficiency.

2. Elicitation: Elicitation task will help the customer to define the actual requirement of a
system. To know the objectives of the system or the project to be developed is a
critical job. This phase will help people to determine the goal of a system and clear idea
about the system can be achieved.

3. Elaboration: The information obtained from the customer during inception and
elicitation is expanded and refined during elaboration. This requirement engineering
activity focuses on developing a refined technical model of software functions, features
and constraints.

4. Negotiation: This phase will involve the negotiation between what user actual expects
from the system and what is actual feasible for the developer to build. Often it is seen

Vidyalankar : T.Y. Diploma  SE

- 18 -

that user always expect lot of things from the system for lesser cost. But based on the
other aspect and feasibility of a system the customer and developer can negotiate on
the few key aspect of the system and then they can proceed towards the
implementation of a system.

5. Specification: A specification can be a re-written document, a set of graphical models, a
formal mathematical model, a collection of usage scenario, a prototype, or any
combinations of these.
The specification is the final work product produced by the requirement engineers. It
serves as the foundation for subsequent software engineering activities. It describes
the function and performance of a computer based system and the constraints that will
govern its development.

6. Validation: The work products produced as a consequence of requirements engineering
are assessed for quality during a validation step. Requirements validation examines the
specification to ensure that all software requirements have been stated unambiguously;
that inconsistencies, omissions and errors have been detected and corrected, and that
the work products conform to the standards established for the process, the project,
and the product.

7. Requirements management : Requirement management begins with identification. Each
requirement is assigned a unique identifier. Once requirement have been identified,
traceability tables are developed.

Q.5(c) Explain the term debugging. Explain different debugging. [8]
Ans.: Debugging occurs as a consequence of successful testing. That is, when a test case uncovers

an error, debugging is the process that results in the removal of the error.
Although debugging can and should be an orderly process, it is still very much an art.

There are three Different Debugging Strategies available as follows :
(1) Brute Force,
(2) Backtracking, and
(3) Cause Elimination.

1. Brute Force: This category of debugging is probably the most common and least

efficient method for isolating the cause of a software error. Brute force debugging
methods are applied when all else fails. Using a "let the computer find the error"
philosophy, memory dumps are taken, run-time traces are invoked, and the program is
loaded with WRITE statements. In the morass of information that is produced a clue is
found that can lead us to the cause of an error. Although the mass of information
produced may ultimately lead to success, it more frequently leads to wasted effort and
time. Thought must be expended first.

2. Backtracking: It is a fairly common debugging strategy that can be used successfully in

small programs. Beginning at the site where a symptom has been uncovered, the source
code is traced backward (manually) until the site of the cause is found.
Unfortunately, as the number of source lines increases, the number of potential
backward paths may become unmanageably large.

3. Cause Elimination: It is manifested by induction or deduction and introduces the concept

of binary partitioning. Data related to the error occurrence are organized to isolate
potential causes. A "cause hypothesis" is devised and the aforementioned data are used to
prove or disprove the hypothesis. Alternatively, a list of all possible causes is developed
and tests are conducted to eliminate each. If initial tests indicate that a particular cause
hypothesis shows promise, data are refined in an attempt to isolate the bug.

Prelim Paper Solution

- 19 -

Q.6 Attempt any FOUR of the following : [16]
Q.6(a) Explain Deployment principles. [4]
Ans.: Deployment principle:

Principle 1: Manage customer’s expectations.
It always happens that customer wants more than he has started earlier as his
requirements. It may be the case that customer gets disappointed, even after getting all his
requirements satisfied. Hence at time of delivery developer must have skills to
manage customer‘s expectations.

Principle 2: Assembly and test complete delivery package.
It is not the case that the deliverable package is ‗only software‘. The customer must get all
supporting and essential help from developer‘s side.

Principle 3: Record-keeping mechanism must be established for customer support.
Customer support is important factor in deployment phase. If proper support is not
provided, customer will not be satisfied. Hence support should be well planned and with
record-keeping mechanism.

Principle 4: Provide essential instructions, documentations and manual.
Many times, developer thinks ―when project is successful deliverable part is only working
program‖. But realty is that working program is just part of software product. Actual
project delivery includes all documentations, help files and guidance for handling the
software by user.

Principle 5: Don’t deliver any defective or buggy software to the customer.
In incremental type of software, software organizations may deliver some defective
software to the customer by giving assurance that the defects will be removed in next
increment.

Q.6(b) Differentiate between validation and verification. [4]
Ans.:

 Validation Verification
1. Validation is a dynamic mechanism of

validating and testing
Verification is a static practice of verifying
documents, design, code and

2. It always involves executing the code. It does not involve executing the code.
3. It is computer based execution of

program.
It is human based checking of documents
and files.

4. Validation uses methods like black box
(functional) testing, gray box testing,
and white box (structural)

Verification uses methods like inspections,
reviews, walkthroughs, and Desk-checking
etc.

5. Validation is to check whether software
meets the customer

Verification is to check whether the
software conforms to specifications.

6. It can catch errors that verification
cannot catch. It is High Level

It can catch errors that validation cannot
catch It is low level exercise.

7. Target is actual product-a unit. a module,
a bent of integrated modules, and
effective final product.

Target is requirements specification,
application and software architecture, high
level, complete design, and

8. Validation is earned out with the
involvement of testing team.

Verification is done by QA team to ensure
that the software is as per the
specifications in the SRS document.

 It generally follow’s after verification. It generally comes before Validation

Vidyalankar : T.Y. Diploma  SE

- 20 -

Q.6(c) Explain about software quality assurance. [4]
Ans.: Software quality assurance (SQA) is a process that ensures that developed software meets

and complies with defined or standardized quality specifications. SQA is an ongoing process
within the software development life cycle (SDLC) that routinely checks the developed
software to ensure it meets desired quality measures. SQA helps ensure the development
of high-quality software. SQA practices are implemented in most types of software
development, regardless of the underlying software development model being used. In a
broader sense, SQA incorporates and implements software testing methodologies to test
software. Rather than checking for quality after completion, SQA processes test for
quality in each phase of development until the software is complete.

With SQA, the software development process moves into the next phase only once the
current/previous phase complies with the required quality standards.

SQA generally works on one or more industry standards that help in building software
quality guidelines and implementation strategies. These standards include the ISO 9000 and
capability maturity model integration (CMMI).

Software quality assurance is composed of a variety of tasks associated with two different
constituencies - the software engineers who do technical work and an SQA group that has
responsibility for quality assurance planning, oversight, record keeping, analysis, and
reporting. Software engineers address quality (and perform quality assurance and quality
control activities) by applying solid technical methods and measures, conducting formal
technical reviews, and performing well-planned software testing.

Q.6(d) Describe behavioral model. [4]
Ans.: Behavioral models are used to describe the overall behavior of a system.

The behavioral model indicates how software will respond to external events or stimuli.
To create the model, you should perform the following steps:
1. Evaluate all use cases to fully understand the sequence of interaction within the system.
2. Identify events that drive the interaction sequence and understand how these events

relate to specific objects.
3. Create a sequence for each use case.
4. Build a state diagram for the system.
5. Review the behavioral model to verify accuracy and consistency

Two types of behavioral model are:
Data processing models that show how data is processed as it moves through the system
State machine models that show the systems response to events
These models show different perspectives, so both of them are required to describe the
system’s behavior

Data Processing Model
Data flow diagrams (DFDs) may be used to model the system’s data processing. These show
the processing steps as data flows through a system. DFDs are an intrinsic part of many
analysis methods. It is Simple and intuitive notation that customers can understand. It show
end-to-end processing of data. DFDs model the system from a functional perspective. It is
helpful to develop an overall understanding of the system.

State machine Model
These model the behavior of the system in response to external and internal events. They
show the system’s responses to stimuli so are often used for modeling real modeling real
time systems. State machine models show system states as nodes and events as arcs
between these nodes. When an event occurs, the system moves from one state to another.
State charts, An integral part of the UML are used to represent state machine models

Prelim Paper Solution

- 21 -

Q.6(e) State testing principles and coding principles. [4]
Ans.: Testing Principles : The objective of testing is to find undiscovered error.

(i) All tests should be traceable to customer requirements.
(ii) Tests should be planned long before testing begins : Testing planning can start as

soon as analysis is started. Detailed test cases can begin as soon as design model is
generated.

(iii) The Pareto principle applies to software testing : The principle states that 80% of all
errors uncovered during testing will likely be traceable to 20% of all program
components. These components can be can be separated and tested thoroughly.

(iv) Testing should begin "in the small" and progress toward testing "in the large" :
Start with unit testing and end with system testing.

(v) Exhaustive testing is not possible.

Coding Principles and Concepts
The construction activity represents coding and testing of the application. Today code can
be written or generated using tools.

Preparation principles: Before you write one line of code, be sure you:
 Understand the problem you're trying to solve.
 Understand basic design principles and concepts.
 Pick a right programming language.
 Select a programming environment that provides tools that will make your work easier.
 Create a set of unit tests that can be used to test the component when it is ready.

Coding Principles : As you begin writing code, be sure you
 Constrain your algorithms by following structured programming practice.
 Select data structures that will meet the design requirements.
 Understand the software architecture and create interfaces that are consistent with

it.
 Keep conditional logic as simple as possible.
 Create nested loops in a way that makes them easily testable.
 Select meaningful variable names and follow other local coding standards.
 Write code that is self-documenting.
 Use indentation to make programs readable.

Validation principles : After completing first coding pass, be sure you
 Conduct code walkthrough.
 Perform unit test and correct errors.

Testing Principles : The objective of testing is to find undiscovered error.
(i) All tests should be traceable to customer requirements.
(ii) Tests should be planned long before testing begins : Testing planning can start as

soon as analysis is started. Detailed test cases can begin as soon as design model is
generated.

(iii) The Pareto principle applies to software testing : The principle states that 80% of all
errors uncovered during testing will likely be traceable to 20% of all program
components. These components can be can be separated and tested thoroughly.

(iv) Testing should begin "in the small" and progress toward testing "in the large" :
Start with unit testing and end with system testing.

 (v) Exhaustive testing is not possible.

Vidyalankar : T.Y. Diploma  SE

- 22 -

Q.6(f) Explain SCM. [4]
Ans.: Software configuration management (SCM), also called change management, is a set of

activities designed to manage change by identifying the work products that are likely to
change, establishing relationships among them, defining mechanisms for managing different
versions of these work products, controlling the changes imposed, and auditing and
reporting on the changes made.
SCM is an umbrella activity that is applied throughout the software process. SCM is a set of
tracking and control activities that are initiated when SE project begin and terminate only
when the software is taken out of operation. SCM helps to improve software quality and on
time delivery. SCM defines the project strategy for change management. When formal SCM
is invoked, the change control process produces software change requests, reports and
engineering change orders. SCM helps to track, analyze and control every work product.

Need of SCM
 To Identify all items that define the software configuration
 To Manage changes to one or more configuration items
 To Facilitate construction of different versions of a software application
 To Ensure that software quality is maintained as configuration evolves.

    

