
- 1 -

S.Y. Diploma : Sem. III
[CO/CM/IF/CW]

Data Structures Using ‘C’
Time: 3 Hrs.] Prelim Question Paper Solution [Marks : 70

Q.1 Attempt any FIVE of the following : [10]
Q.1(a) Explain the concept of information, Next, Null pointer and empty

list with respect to link list.
[2]

Ans.: Info Field: It is used to store data inside the node.
 NEXT: It is used to store reference of next element in the list.
 Null Pointer: It is used to specify end of the list. The last element of

list contains NULL pointer to specify end of list.
 Empty List: A linked list is said to be empty if head (start) node

contains NULL pointer.

Q.1(b) (ii) Describe priority queue with example. [4]
Ans.: A priority queue is a queue in which the intrinsic ordering among the

elements decides the result of its basic operations i.e. the ordering among
the elements decides the manner in which Add and Delete operations will be
performed. In a priority queue,

 1) Each element is assigning a priority.
 2) The elements are processed according to, higher priority element is

processed before lower priority element and two elements of same
priority are processed according to the order of insertion.

(Represent either with array or linked list)
Array representation: Array element of priority queue has a structure with
data, priority and order. Priority queue with 5 elements:

C,1,4 B,3,2 B,3,5 A,4,1 D,5,3

OR
 Linked Representation:

Above figure shows priority. Queue with 5 elements where B & C have same
priority number.

A 1 B 2 C 2

D 4 E 5

Start

NULL

Vidyalankar : S.Y. Diploma DS

- 2 -

Each node in above priority queue contains three items.
(i) Information field INFO
(ii) A priority number PR No
(iii) Link Next

Q.1(c) Define queue? Explain how pointer front and rear related to queue

with diagram.
[2]

Ans.: A Queue is an ordered collection of items. It has two ends, front and rear.
Front end is used to delete element from queue. Rear end is used to insert
an element in queue. Queue has two ends; the element entered first in the
queue is removed first from the queue. So it is called as FIFO list.

Element is inserted in the list at a position indicated by rear end. For
inserting an element rear end is incremented by one.

Element can be deleted from a list from the position indicated by front end.
For deleting an element rear end is incremented by one.

Q.1(d) Convert the following infix expression to its postfix form using

stack A + B – C*D/E + F.
[2]

Ans.:
Symbol # Scanned Stack Expression

1 ((nil
2 A (A
3 + (+ A
4 B (+ AB
5 - (- AB+
6 C (- AB+C
7 * (-* AB+C
8 D (-* AB+CD
9 / (-/ AB+CD*
10 E (-/ AB+CD*E
11 + (+ AB+CD*E/-
12 F (+ AB+CD*EF/-
13) nil AB+CD*E/-F+

0 1 2 3 4

A B C D E Rear
Front

Prelim Question Paper Solution

- 3 -

Q.1(e) Describe given two types of graphs: Directed and undirected
graph.

[2]

Ans.: Directed Graph
 A directed graph G is also called digraph which is the same as multigraph

except that each edge e in G is assigned a direction or in other words each
edge in G is identified with an ordered pair (U, V) of nodes in G rather than
an unordered pair. Figure 1 illustrates three directed graphs:

Fig.1: Directed Graphs

 The set of edges for the graph in figure 1(b) is {<A, B>, <A, C>, <A, D>, <C, D>,
<F, C> <E, G>, <A, A>). We use angle brackets to indicate an ordered pair.

 A directed graph G is said to be connected or strongly connected if for each
pair (U, V) of nodes in G there is a path from U to V and there is also a path
from V to U.

 A directed graph G is said to simple if G has no parallel edges. A simple graph G
may have loops but it cannot have more than one loop at a given node.

 Undirected Graph
 An undirected graph G is a graph in which each edge e is not assigned a

direction. Examples of undirected graphs can be seen in figure 2 given below:

Fig. 2: Undirected Graph

Q.1(f) Explain time complexity and space complexity. [2]
Ans.: Time complexity

Time complexity of a program/algorithm is the amount of computer time
that it needs to run to completion. While calculating time complexity, we
develop frequency count for all key statements which are important and
basic instructions of an algorithm.

Vidyalankar : S.Y. Diploma DS

- 4 -

Frequency count for algorithm A is 1 as a=a+1 statement will execute only
once. Frequency count for algorithm B is n as a=a+1 is key statement
executes n time as the loop runs n times. Frequency count for algorithm C is
n as a = a + 1 is key statement executes n2 time as the inner loop runs n
times, each time the outer loop runs and the outer loop also runs for n times.

Space Complexity :
Space complexity of a program/algorithm is the amount of memory that it
needs to run to completion. The space needed by the program is the sum of
the following components :
 Fixed space requirements : It includes space for instructions, for simple

variables, fixed size structured variables and constants.
 Variable time requirements : It consists of space needed by structured

variables whose size depends on particular instance of variables.

Q.1(g) Write any four applications of data structure. [2]
Ans.: Following are some real world applications of Data Structures:
 (i) Mostly, Dictionaries are built using a Hash Table Data Structure. Hash

Tables are also used for caches, database indexing, fast data lookup -
symbol table for compilers.

 (ii) Trees helps to build File System, Parsers.
 (iii) B-Trees helps to build Database Design.
 (iv) BSP tree is used in 3D computer graphics.
 (v) Radix tree is used in IP routing table.
 (vi) Stack : Real word applications like Java virtual machine, expression

evaluation, UNDO\REDO operation in word processors etc.
 (vii) Queues : Operating systems often maintain a queue of processes that

are ready to execute or that are waiting for a particular event to
occur.

 (ix) Priority queues : process scheduling in the kernel.

Q.2 Attempt any THREE of the following : [12]
Q.2(a) Explain stack overflow and underflow conditions with example. [4]
Ans.: Stack Overflow
 Sometimes when a new data is to be inserted into a stack but there is no

available space, then this situation is known as Stack Overflow.

 Example: If a stack has maximum capacity of 3 elements, and these three

are already occupied and the programmer tries to push in a fourth element,
then it will lead to overflow.

Prelim Question Paper Solution

- 5 -

 Stack Underflow
 Sometimes when one wants to delete data from a stack but the stack is

already empty, then this situation is known as Stack Underflow.

 Example: If a stack is empty and a programmer tries to execute the POP

operation on it, then it will cause the Underflow error.

Q.2(b) Write an algorithm to insert and delete an element from queue. [4]
Ans.: Insert procedure :

(i) Check queue full i.e. check rear position. If it is full then display message
and return to calling function. Otherwise go to step 2.

(ii) Increment Rear by 1.
(iii) Insert element with rear pointer.
(iv) Check position of front. If inserted element is first element then set

front to 0.
(v) Return to calling function

Delete procedure:
(i) Checks for queue empty i.e. check front position. If it is empty then

display message and return to calling function. Otherwise go to step 2.
(ii) Check front and rear positions. If front and rear both are equal then

show queue empty otherwise increment front by one.
(iii) Return to calling function

Q.2(c) Differentiate between tree and graph w.r.t. any 4 parameters. [4]
Ans.: Differentiate between tree and graph

 Tree Graph
(i) Tree has only one path between

two vertices.
Graph can have multiple paths
between two vertices.

(ii) Tree has no loops. Graph can have loops.
(iii) Tree has a root node. Graph has no root node.
(iv) In tree, there is concept of

parent and child
In graph, there is no concept of
parent and child.

Q.2(d) Write an algorithm to insert a node in between in a link list. [4]
Ans.: Algorithm to insert an element insert a node in between in a link list.
 void add_at_specified(struct node *q, intloc, int no)
 {
 Step 1: Begin
 Step 2: Allocate memory for temp node and new node (r); set r->info = no
 Step 3: Initialize temp to the beginning of the linked list.

Vidyalankar : S.Y. Diploma DS

- 6 -

Step 4: Traverse temp till the previous node of the specified location given
by loc in the linked list (Previous node = temp node)
Step 5: Set r->next = temp-next;
 Set temp->next = r;
Step 6: Stop
}

Q.3 Attempt any THREE of the following : [12]
Q.3(a) Write an algorithm for inorder traversal of binary tree. [4]
Ans.: The inorder traversal starts at the root of the binary tree. Then moves to

leftchild node and this is repeated till there is no leftchild node. When
there is no leftchild node process the data of the node and after processing
it tries to move to right child. If there is no right child node it moves up by
one node, process the data and tries to move right. To traverse a non-empty
binary tree in inorder:
Inorder Traversal (Left- Data- Right)
a. Traverse the left sub tree in Inorder.
b. Visit the root.
c. Traverse the right subtree in Inorder.

Algorithm:
Step 1: temp =root
Step 2: If temp is not equal to NULL
Step 3: In order (temp - > left)
Step 4: process temp-> data // (node visited)
Step 5: In order (temp ->right)
Step 6: stop

01 02 03 Null

Specified location - 3

Before insertion

01 02

Specified location - 3

After insertion
Location 1 Location 2 Location 4

Temp. (Previous node)

04
r

03 Null

Location 3

Prelim Question Paper Solution

- 7 -

Q.3(b) For the following directed graph :
(i) Give adjacency matrix representation.
(ii) Give adjacency list representation.

[4]

Ans.: Adjacency List:
 A: B
 B: D
 C: A,D
 D: A

 Adjacency Matrix:
 A B C D
 A 0 1 0 0
 B 0 0 0 1
 C 1 0 0 1
 D 1 0 0 0

Q.3(c) Write an algorithm to implement binary search. [4]
Ans.: (i) Binary search algorithm locates the position of an element in a sorted

array.
 (ii) Binary search works by comparing an input value to the middle element

of the array.
 (iii) The comparison determines whether the element equals the input, less

than the input or greater.
 (iv) When the element being compared to equals the input the search stops

and typically returns the position of the element.
 (v) If the element is not equal to the input then a comparison is made to

determine whether the input is less than or greater than the element.
 (vi) Depending on which it is the algorithm then starts over but only

searching the top or bottom of the array's elements.

Q.3(d) Implement C Program for performing following operations on

Array : Insertion, Display.
[4]

Ans.: #include<stdio.h>
 #include<conio.h>
 #define MAX 5

 void insert(int *, int pos, int num);
 void display(int *);

 void main()
 {

Vidyalankar : S.Y. Diploma DS

- 8 -

 int arr[5];
 clrscr();
 insert(arr,1,11);
 insert(arr,2,12);
 insert(arr,3,13);
 insert(arr,4,14);
 insert(arr,5,15);
 printf("\nElements of array are as follows: ");
 display(arr);
 getch();
 }

 void insert(int *arr, int pos, int num)
 {
 for(int i=MAX-1; i>=pos;i--)
 {
 arr[i]=arr[i-1];
 }
 arr[i]=num;
 }

 void display(int *arr)
 {
 for(int i=0; i<MAX; i++)
 {
 printf("%d\t", arr[i]);
 }
 }

Q.4 Attempt any THREE of the following : [12]
Q.4(a) Explain the concept of double ended queue. [4]
Ans.: Double Ended Queue :
 (i) A double-ended queue or dequeue is an abstract data structure that

implements a queue for which elements can only be added to or removed
from the front (head) or back (tail).

 (ii) It is also often called a head-tail linked list.
 (iii) Dequeue is a special type of data structure in which insertions and deletions

will be done either at the front end or at the rear end of the queue.
 (iv) The operations that can be performed on dequeues are
 (a) Insert an item from front end
 (b) Insert an item from rear end

Prelim Question Paper Solution

- 9 -

 (c) Delete an item from front end
 (d) Delete an item from rear end
 (e) Display the contents of queue

Q.4(b) Describe circular queue with an example. [4]
Ans.: Circular Queue

Circular queue are the queues implemented in circular form rather than in a
straight line. Circular queues overcome the problem of unutilized space in linear
queue implemented as an array. The main disadvantage of linear queue using
array is that when elements are deleted from the queue, new elements cannot
be added in their place in the queue, i.e. the position cannot be reused.

After rear reaches the last position, i.e. MAX-1 in order to reuse the vacant
positions, we can bring rear back to the 0th position, if it is empty, and
continue incrementing rear in same manner as earlier. Thus rear will have to
be incremented circularly. For deletion, front will also have to be
incremented circularly.

Rear can be incremented circularly by the following code.
 If ((rear == MAX-1) and (front !=0)
 Rear =0;
 Else
 Rear= rear +1;

Example: Assuming that the queue contains three
elements.

Now we insert an element F at the beginning by bringing rear to the first
position in the queue. This can be represented circularly as shown.

In the above example, if another
element, G is added to the queue,
i.e. rear and front coincide. But
rear and front coincide even when
the queue is full is empty. Thus
rear and front cannot be used for
both i.e. to check for empty queue
as well as the condition for a full
queue.

Rear

Front

Front

Rear

2
3

4

0 Front
1

Rear

F

E
DC

 C D E

Front Rear

Vidyalankar : S.Y. Diploma DS

- 10 -

The rear ==front condition is used to check for the empty queue since
initially both are initialized to the same value. Thus to check for queue full
condition there are three methods.
1) Use a counter to keep track of the number of elements in the queue.

If this counter reaches to MAX the queue is full.
2) After remove operation rear = front, then set to -1. After add operation

if rear = front then will say that queue is full.
3) By checking (rear + 1) % MAX== front.

Q.4(c) Show the effect of INSERT and DELETE operations on to the Linear

queue of size 10. The Linear queue sequentially contains 10, 20, 30,
40, and 50 where 10 is at front of the queue. Show diagrammatically
the effect of :
(i) INSERT (12) (ii) INSERT (34)
(iii) DELETE (iv) INSERT (56)

[4]

Ans.: Initial Queue:

 Step 1: INSERT (12)

 Step 2: INSERT (34)

 Step 3: DELETE

 Step 4: INSERT (56)

Q.4(d) Construct the binary search tree using following elements:

35,15,40,7,10,100,28,82,53,25,3. Show diagrammatically each
step of construction of BST.

[4]

Ans.: Construction of Binary Search Tree (BST):
 Step 1:

 Step 2:

Prelim Question Paper Solution

- 11 -

 Step 3:

 Step 4:

 Step 5:

 Step 6:

 Step 7:

 Step 8:

 Step 9:

Vidyalankar : S.Y. Diploma DS

- 12 -

 Step 10:

 Step 11:

Q.5 Attempt any TWO of the following : [12]
Q.5(a) Write an algorithm to count number of nodes in singly linked list. [6]
Ans.: Step 1: Count = 0. SAVE = FIRST.
 Step 2: Repeat step 3 while SAVE != NULL.
 Step 3: Count= Count + 1. SAVE=SAVE->LINK.
 Step 4: Return Count.

Q.5(b) From the given tree complete

six answers :
(i) Degree of tree
(ii) Degree of node 3
(iii) Level of node 5
(iv) Indegree of node 3
(v) Outdegree of node 3
(vi) Height of tree

[6]

Ans.: (i) Degree of Tree = 3
 (ii) Degree of node 3 = 3
 (iii) Level of Node 5 = 2
 (iv) Indegree of Node 3 = 1
 (v) Outdegree of Node 3 = 2
 (vi) Height of tree = 3

Prelim Question Paper Solution

- 13 -

Q.5(c) Consider the graph given in Figure.
Find its adjacency matrix and
adjacency link representation.

[6]

Ans.:

Adjacency Matrix

 A =

A B C D
A 0 1 0 1
B 1 0 0 0
C 1 1 0 1
D 0 0 0 0

 OR

A D C B
A 0 1 0 1
D 0 0 0 0
C 1 1 0 1
B 1 0 0 0

Adjacent nodes can contain two or three fields.

Q.6 Attempt any TWO of the following : [12]
Q.6(a) Create a Singly Linked List using data fields 10, 20, 30, 40, 50.

Search a node 40 from the SLL and show procedure step-by-step
with the help of diagram from start to end.

[6]

Ans.: Step 1:

A

B C

D

A

B

C

D

START

X

X

X X

X

A

B C

D

Vidyalankar : S.Y. Diploma DS

- 14 -

 Step 2:

 Step 3:

 Step 4:

 Result: Value was found in the linked list. The pointer points to the node

having the value.

Q.6(b) Describe breadth first search traversal in a graph with example. [6]
Ans.: Algorithm for BFS:
 (i) Initialize all nodes to ready state.
 (ii) Insert starting node in a queue and change its state to waiting state.
 (iii) Repeat steps 4 to 6 till the queue becomes empty.
 (iv) Remove front node N from queue 2 change its status to visit.
 (v) Insert all adjacent nodes of N at the rear end of the queue and change

their status to ‘waiting state’.
 (vi) From the origin find path from source node to destination node or from

the queue element list find all nodes that are reachable.
 (vii) Stop.

 Example :
 Front of the queue is set to ‘0’
 Rear of the queue is set to ‘0’
 Queue is used to indicate elements of the

graph which are visited.

 Origin is used to keep track of origin of

each node.

A

K

C F B

E D G

J

Prelim Question Paper Solution

- 15 -

 Find all nodes reachable from ‘A’
 1) Insert A into a queue.

A
 Front=1 Rear=1
 Queue=A Origin=0

 2) Remove front element A and insert adjacent nodes of a in queue.

 F C B
 Queue=A front=1
 Origin=O, A, A, A rear=3

 3) Remove element F and insert its adjacent nodes in the queue.

 C B D
 Queue=A, F, C, B, D front=2
 Origin=O, A, A, A, F rear=4

 4) Remove front element C and insert its adjacent nodes in the queue
 (F is already visited)

 B D
 Queue=A, F, C, B, D front=3
 Origin=O, A, A, A, F rear=4

 5) Remove front element B and insert adjacent nodes

 D G
 Queue=A, F, C, B, D, G front=4
 Origin=O, A, A, A, F, B rear=5

 6) Remove front element D and insert adjacent nodes (C is already visited)
 G

 Queue=A, F, C, B, D, G front=5
 Origin=O, A, A, A, F, B, G rear=5

 7) Remove front element G and insert adjacent nodes
 E

 Queue=A, F, C, B, D, G, E front=6
 Origin=O, A, A, A, F, B, G rear=6

 8) Remove front element E and insert its adjacent nodes (D is already a
visited node)

 J
 Queue=A, F, C, B, D, G, E, J
 Origin=O, A, A, A, F, B, G, E

Vidyalankar : S.Y. Diploma DS

- 16 -

 9) Remove J

 Queue = A, F, C, B, D, G, E, J
 All nodes readable from A-A, F, C, B, D, G, E, J
 Origin= O, A, A, A, F, B, G, E, J

Q.6(c) Convert the given infix string to prefix expression and shows the

details of stack at each step.
 (A B/C) (D E F)

[6]

Ans.:

 Prefix exp = A / BC DEF

 Q Stack Prefix
) Initialize))
 F)) F
)) F
 E)) FE
)) FE
 D)) FED
 C) FED
) FED
))) FED
 C)) FED C
 /)) / FED C
 B)) / FED CB
)) FED CB /
 A)) FED CB / A
 () FED CB / A

Initialize (empty FED CB / A *

