
- 1 -

S.Y. Diploma : Sem. III
[CO/CM/IF/CW]

Object Oriented Programming
Time: 3 Hrs.] Prelim Question Paper Solution [Marks : 70

Q.1 Attempt any FIVE of the following : [10]
Q.1(a) Explain how to define a function outside the class definition. [2]
Ans.: Outside the Class Definition:
 Member functions that are declared inside a class have to be defined

separately outside the class. Their definitions are very much like the normal
functions. They should have a function header and a function body.

 return-type class-name :: function-name (argument declaration)
 {
 Function body
 }

Q.1(b) Explain the concept of Static Data Members (no C++ program needed). [2]
Ans.: Static Data Members
 A data member of a class can be qualified as static. The properties of a

static member variable are similar to that of a C static variable. A static
member variable has certain special characteristics. These are:
 It is initialized to zero when the first object of its class is created. No

other initialization is permitted.
 Only one copy of that member is created for the entire class and is

shared by all the objects of that class, no matter how many objects are
crated.

 It is visible only within the class, but its lifetime is the entire program.

Static variables are normally used to maintain values common to the entire
class. For example, a static data member can be used as a counter that
records the occurrences of all the objects.

Q.1(c) Explain the concept of destructor (no C++ Program needed) [2]
Ans.: A destructor, as the name implies, is used to destroy the objects that have

been created by a constructor. Like a constructor, the destructor is a
member function whose name is the same as the class name but is preceded
by a tilde. For example, the destructor for a class integer can be defined as
shown below:

 -integer () {}

Vidyalankar : S.Y. Diploma OOP

- 2 -

 A destructor never takes any argument nor does it return any value. It will
be invoked implicitly by the compiler upon exit from the program (or block or
function as the case may be) to clean up storage that is no longer accessible.
It is a good practice to declare destructors in a program since it releases
memory space for future use.

Q.1(d) List the areas of application of OOP. [2]
Ans.: The promising areas for application of OOP include:
 Real-time systems
 Simulation and modeling
 Object-oriented databases
 Hypertext, hypermedia and expertext
 AI and expert systems
 Neural networks and parallel programming
 Decision support and office automation systems
 CIM/CAM/CAD systems.

Q.1(e) Describe the structure of a C++ program (with diagram). [2]
Ans.: Structure of C++ Program
 As it can be seen from the Program 2.3, a typical C++ program would contain

four sections as shown in Fig. 2.3. These sections may be placed in separate
code files and then compiled independently or jointly.

Fig. 2.3 Structure of C++ Program

 It is a common practice to organize a program into three separate files.

Q.1(f) Explain the concept of identifiers. [2]
Ans.: Identifiers:
 Identifiers refers to the names of variables, functions, arrays, classes etc.

created by the programmer. They are the fundamental requirement of any
language. Each language has its own rules for naming these identifiers. The
following rules are common to both C and C++:

 Only alphabetic characters, digits and underscores are permitted.

Prelim Question Paper Solution

- 3 -

 The name cannot start with a digit.
 Uppercase and lowercase letters are distinct.
 A declared keyword cannot be used as a variable name.

Q.1(g) List some languages that use OOP. [2]
Ans.: List of OOP Languages:
 1. C++
 2. Java
 3. Visual Basic .Net
 4. Visual C++ .Net
 5. ASIP .Net

Q.2 Attempt any THREE of the following : [12]
Q.2(a) Explain copy constructor with example. [4]
Ans.: As stated earlier, a copy constructor is used to declare and initialize an

object from another object. For example, the statement
 integer 12(I1);
 would define the object I2 and at the same time initialize it to the values of

I1. Another form of this statement is
 integer I2 = I1;
 The process of initializing through a copy constructor is known as copy

initialization. Remember, the statement
 I2 = I1;

Q.2(b) Write a C++ Program to swap two numbers using pointers. [4]
Ans.: #include<iostream.h>
 #include<conio.h>
 void main()
 {
 clrscr();
 int *a,*b,*temp;
 cout<<”Enter value of a and b”;
 cin>>*a>>*b;
 temp=a;
 a=b;
 b=temp;
 cout<<”After swapping, a=” <<*a<< “b=” <<*b;
 getch();
 }

Vidyalankar : S.Y. Diploma OOP

- 4 -

Q.2(c) Draw a diagram showing the basic data types in C++ [4]
Ans.: Basic Data Types:
 Data types in C++ can be classified under various categories as shown

Q.2(d) What is a friend function? What are its characteristics? (No C++
program needed)

[4]

Ans.: Friendly Functions:
 We have been emphasizing throughout this chapter that the private

members cannot be accessed from outside the class. That is, a non-member
function cannot have an access to the private data of a class. However,
there could be a situation where we would like two classes to share a
particular function. For example, consider a case where two classes, manager
and scientist, have been defined. We would like to use a function
income_tax() to operate on the objects of both these classes. In such
situations, C++ allows the common function to be made friendly with both the
classes, thereby allowing the function to have access to the private data of
these classes. Such a function need not be a member of any of these classes.

 To make an outside function “friendly” to a class, we have to simply declare
this function as a friend of the class as shown below:

 class ABC
 {
 ……
 ……
 public:
 ……
 ……
 friend void xyz (void): //declaration
 };

Prelim Question Paper Solution

- 5 -

 The function declaration should be preceded by the keyword friend. The
function is defined elsewhere in the program like a normal C++ function. The
function definition does not use either the keyword friend or the scope
operator::. The functions that are declared with the keyword friend are
known as friend functions. A function can be declared as a friend in any
number of classes. A friend function, although not a member function, has
full access rights to the private members of the class.

 A friend function possesses certain special characteristics:
 It is not in the scope of the class to which it has been declared as

friend.
 Since it is not in the scope of the class, it cannot be called using the

object of that class.
 It can be invoked like a normal function without the help of any object.
 Unlike member functions, it cannot access the member names directly

and has to use an object name and dot membership operator with each
member name. (e.g. A.x.).

 It can be declared either in the public or the private part of a class
without affection its meaning.

 Usually, it has the objects as arguments.

Q.3 Attempt any THREE of the following : [12]
Q.3(a) Write a C++ program that replaces the string “Computer” in the

String “Diploma in Computer Engineering” with string “Information
Technology”.

[4]

Ans.: #include <iostream.h>
 #include <string.h>
 void findAndReplaceAll(std : : string & data, std : : string toSearch, std : :

string replaceStr)
 {
 size_t pos = data.find(toSearch);
 while(pos != std : : string : : npos)
 {
 // Replace this occurrence of Sub String
 data.replace(pos, toSearch.size(), replaceStr);
 // Get the next occurrence from the current position
 pos =data.find(toSearch, pos + toSearch.size());
 }
 }

 void main()

Vidyalankar : S.Y. Diploma OOP

- 6 -

 {
 clrscr();
 std : : string data = "Diploma in Computer Engineering";
 std : : cout<<data<<std : : endl;
 findAndReplaceAll(data, "Computer", "Information Technology");
 std : : cout<<data<<std : : endl;
 getch();
 }

Q.3(b)

Define classes to appropriately represent class hierarchy as shown in
above figure. Use constructors for both classes and display Salary
for a particular employee.

[4]

Ans.: #include<iostream.h>
 #include<conio.h>
 class employee
 {
 public:
 int empid; char empname[20];
 employee()
 {
 cout<<"New employee record details:"<<endl;
 cout<<"Enter Employee ID:";
 cin>>empid;
 cout<<"Enter Employee Name:";
 cin>>empname;
 }
 void showdata()

Prelim Question Paper Solution

- 7 -

 {
 cout<<"Employee ID: "<<empid<<" has name: "<<empname<<endl;
 }
 };

 class salary:private employee
 {
 public:
 float basic,hra,da,cca,total;
 salary():employee()
 {
 cout<<"Enter basic salary (in Rupees):";
 cin>>basic;
 cout<<"Enter house rent allowance (in Rupees):";
 cin>>hra;
 cout<<"Enter dearness allowance (in Rupees):";
 cin>>da;
 cout<<"Enter city compensatory allowance (in Rupees):";
 cin>>cca;
 total = basic+hra+da+cca;
 cout<<"The total salary of the employee: "<<empname<<" having

 ID: "<<empid<<" is Rs. "<<total<<endl;
 }
 };

 void main()
 {
 clrscr();
 salary s1;
 s1.getdata();
 getch();
 }

Q.3(c) Define a class named ‘Train’ representing following members:

Data members :
 Train Number
 Train Name
 Source
 Destination
 Journey Date
 Capacity

[4]

Vidyalankar : S.Y. Diploma OOP

- 8 -

Member functions :
 Initialise members
 Input Train data
 Display data
Write a C++ program to test the train class.

Ans.: #include<iostream.h>
 #include<conio.h>

 class train
 {
 public:
 int num, capacity;
 char name[20], source[20], dest[20], date[20];
 void getdata()
 {
 cout<<"Enter Train Number:";
 cin>>num;
 cout<<"Enter Train Name:";
 cin>>name;
 cout<<"Enter Train Source Station:";
 cin>>source;
 cout<<"Enter Train Destination Station:";
 cin>>dest;
 cout<<"Enter date of journey in DD-MM-YYYY format:";
 cin>>date;
 cout<<"Enter total number of people that the train can carry:";
 cin>>capacity;
 }
 void showdata()
 {
 cout<<"Train Details:\n\nTrain Number:"<<num<<"\nTrain

Name:"<<name<<"\nTrain Source Station:"<<source<<"\nTrain Destination
Station:"<<dest<<"\nData of Journey:"<<date<<"\nCapacity: "<<capacity<<"
people."<<endl;

 }
 };

 void main()
 {
 train t1;
 clrscr();

Prelim Question Paper Solution

- 9 -

 t1.getdata();
 t1.showdata();
 getch();
 }

Q.3(d) Write a C++ Program to copy a file abc.txt into another file xyz.txt [4]
Ans.: #include<iostream.h>
 #include<conio.h>
 #include<fstream.h>
 #include<stdio.h>
 #include<stdlib.h>
 void main()
 {
 clrscr();
 ifstream fs;
 ofstream ft;
 char ch, fname1[20], fname2[20];
 cout<<"Enter source file name with extension (like abc.txt) : ";
 gets(fname1);
 fs.open(fname1);
 if(!fs)
 {
 cout<<"Error in opening source file..!!";
 getch();
 exit(1);
 }
 cout<<"Enter target file name with extension (like xyz.txt) : ";
 gets(fname2);
 ft.open(fname2);
 if(!ft)
 {
 cout<<"Error in opening target file..!!";
 fs.close();
 getch();
 exit(2);
 }
 while(fs.eof()==0)
 {
 fs>>ch;
 ft<<ch;
 }

Vidyalankar : S.Y. Diploma OOP

- 10 -

 cout<<"File copied successfully..!!";
 fs.close();
 ft.close();
 getch();
 }

Q.4 Attempt any THREE of the following : [12]
Q.4(a) Write a program to implement single inheritance. [4]

Ans.: Single Inheritance : Public
 #include <iostream?

 using namespace std;

 class B
 {
 int a; // private; not inheritable
 public:
 int b; // public; ready for inheritance
 void get_ab();
 int get_a(void);
 void show_a(void);
 };
 class D : public B // public derivation
 {
 int c;
 public:
 void mul (void);
 void display (void);
 };
 //
 void B : : get_ab(void)
 {
 a = 5; b = 10;
 }
 int B : : get_a()
 return a;
 }
 void B : : show_a()

 count << “a = “ << a << “\n”;
 }

Prelim Question Paper Solution

- 11 -

 void D : : mul()
 {
 c = b * get_a();
 }
 void D : : display()
 {
 cout << “a = “ < get_a() << “\n”;
 cout << “b = “ << b << “\n”;
 cout << “c = “ << c << “\n\n”;
 }
 //
 int main()
 {
 D d;
 d.get_ab();
 d.mul();
 d.show_a();
 d.display();

 d.b = 20;
 d.mul();
 d.display();

 return 0;
 }

Q.4(b) Write a program to implement multilevel inheritance. [4]
Ans.: #include <iostream>
 using namespace std;
 class student
 {
 protected:
 int roll_number;
 public:
 void get_number(int);
 void put_number(void);
 };
 void student : : get_number(int a)
 {
 roll_number = a;
 }

Vidyalankar : S.Y. Diploma OOP

- 12 -

 void student : : put_number()
 {
 cout <<”Roll Number: “<< Roll_number << “\n”;
 }
 class test : public student // First level derivation
 {
 protected:
 float sub1;
 float sub2;
 public:
 void get_marks(float, float);
 void put_marks(void);
 };
 void test : : get_marks(float x, float y)
 {
 sub1 = x;
 sub = y;
 }
 void test : : put_marks()
 {
 cout << “Marks in SUB1 = “<< sub1 << “\n”;
 cout << “Marks in SUB2 = “<< sub2 << “\n”;
 }
 class result : public test // Second level derivation
 {
 float total; // private by default
 public:
 void display(void):
 };
 void result : : display(void)
 {
 total = sub1 + sub2;
 put_number();
 put_marks();
 cout << “Total = “ << total << “\n”;
 }
 int main()
 {
 result student 1; // student1 created

 student1.get_number(111);

Prelim Question Paper Solution

- 13 -

 student1.get_marks(75.0, 59.5);

 student1.display();
 return 0;
 }

Q.4(c) Write a C++ program to implement multiple inheritance. [4]
Ans.: Multiple Inheritance
 #include <iostream>

 using namespace std;

 class M
 {
 protected:
 int m;
 public:
 void get_m(int);
 };
 class N
 {
 protected:
 int n;
 public:
 void get_m(int);
 };

 class P : public M, public N
 {
 public:
 void display(void);
 };

 void M : : get_m(intx)
 {
 m = x;
 }

 void N : : get_n(int y)
 {
 n = y;

Vidyalankar : S.Y. Diploma OOP

- 14 -

 }

 void P : : display(void)
 {
 cout << “m + “ << m << “\n”;
 cout << “n = “ << n << “\n”;
 cout << “m*n = “ << m*n << “\n”;
 }
 int main ()
 {
 P p;

 p.get_m(10);
 p.get_n(20);
 p.display();

 return 0;
 }

Q.4(d) Explain the benefits of OOP. [4]
Ans.: Benefits of OOP:
 Through inheritance, we can eliminate redundant code and extend the

use of existing classes.
 We can build programs from the standard working modules that

communicate with one another, rather than having so start writing the
code from scratch. This leads to saving of development time and higher
productivity.

 The principle of data hiding helps the programmer to build secure
programs that cannot be invaded by code in other parts of the program.

 It is possible to have multiple instances of an object to co-exist without
any interference.

 It is possible to map objects in the problem domain to those in the
program.

 It is easy to partition the work in a project based on objects.
 The data-centered design the approach enables us to capture more

details of a model in implementable form.
 Object-oriented systems can be easily upgraded from small to large

systems.
 Message passing techniques for communication between objects makes

the interface descriptions with external systems much simpler.
 Software complexity can be easily managed.

Prelim Question Paper Solution

- 15 -

Q.4(e) Write a C++ program to show an example of implementation of
Destructors.

[4]

Ans.: Implementation of destructors
 #include <iostream>

 using namespace std;

 int count = 0;

 class alpha
 {
 public:
 alpha()
 {
 count++;
 cout << “\nNo. of object created” << count;
 }

 ~alpha()
 {
 cout << “\nNo. of object destroyed” << count;
 count;
 }
 };
 int main()
 {
 cout << “\n\nENTER MAIN\n”;

 alpha A1, A2, A3, A4;
 {
 cout << “\n\nENTER BLOCK1\n”;
 alpha A5;
 }
 {
 cout << “\n\nENTER BLOCK2\n”;
 alpha A6;
 }
 cout << “n\nRE-ENTER MAIN\n”;

 return 0;
 }

Vidyalankar : S.Y. Diploma OOP

- 16 -

Q.5 Attempt any TWO of the following : [12]
Q.5(a) Explain the characteristics of constructors. [6]
Ans.: The constructor functions have some special characteristics. These are:
 They should be declared in the public section.
 They are invoked automatically when the objects are created.
 They do not have return types, not even void and therefore, and they

cannot return values.
 They cannot be inherited, though a derived class can call the base class

constructor.
 Like other C++ functions, they can have default arguments.
 Constructors cannot be virtual. (Meaning of virtual will be discussed

later in Chapter 9.)
 We cannot refer to their addresses.
 An object with a constructor (or destructor) cannot be used as a

member of a union.
 They make ‘implicit calls’ to the operators new and delete when memory

allocation is required.

Q.5(b) Write a C++ program to display number of objects created using

static member.
[6]

Ans.: Static Class Member
 #include <iostream>
 using namespace std;

 class item
 {
 static int count;
 int number;
 public:
 void getdata (int a)
 {
 number = a;
 count ++;
 }
 void getcount (void)
 {
 cout. << “count”;
 cout << count << “\n”;
 }
 };
 int item : : count;

 int main ()

Prelim Question Paper Solution

- 17 -

 {
 item a, b, c; // count is initialized to zero
 a.getcount (); // display count
 b.getcount ();
 c.getcount ();

 a.getcount (100); // getting data into object a
 b.getcount (200); // getting data into object b
 c.getcount (300); // getting data into object c

 count << “After reading data” << “\n”;

 a.getcount (); // display count
 b.getcount ();
 c.getcount ();
 return 0;
 }

Q.5(c) Explain the concept of memory allocation for objects. [6]
Ans.: Memory space for objects is allocated when they are declared and not when

the class is specified. This statements is only partly true. Actually, the
member functions are created and placed in the memory space only once
when they are defied as a part of a class specification. Since all the objects
belonging to that class use the same member functions, no separate space is
allocated for member functions when the objects are created. Only space
for member variables is allocated separately for each object. Separate
memory locations for the objects are essential, because the member
variables will hold different data values for different objects. This is shown
in Fig. 5.3.

Vidyalankar : S.Y. Diploma OOP

- 18 -

Q.6 Attempt any TWO of the following : [12]
Q.6(a) Define Operator Overloading. Write a C++ program to implement

Unary Operator Overloading.
[6]

Ans.: Defining Operator Overloading:
 To define an additional task to an operator, we must specify what it means in

relation to the class to which the operator is applied. This is done with the
help of a special function, called operator function, which describes the
task. The general form of an operator function is:

 return type classname : : operator op(arglist)
 {
 Function body // task defined
 }

 where return type is the type of value returned by the specified operation

and op is the operator being overloaded. The op is preceded by the keyword
operator. operator op is the function name.

 #include <iostream>
 using namespace std;
 class space
 {
 int x;
 int y;
 int z;
 public:
 void getdata(int a, int b, int c);
 void display(void);
 void operator-(); // overload unary minus
 };
 void space : : getdata(int a, int b, int c)
 {
 x = a;
 y = b;
 z = c;
 }
 void space : : display(void)
 {
 cout << x << “ ”;
 cout << y << “ ”;
 cout << z << “\n”;

Prelim Question Paper Solution

- 19 -

 }
 void space : : operator –()
 {
 x = -x;
 y = -y;
 z = -z;
 }
 int main()
 {
 space S;
 S.getdata(10, -20, 30);
 cout << “S : “;
 S. display();
 - S;
 cout << “S : “;
 S.display();
 return 0;
 }

Q.6(b) Write a C++ Program to implement Constructor in Derived Class. [6]
Ans.: #include <iostream>
 using namespace std;
 class alpha
 {
 int x;
 public:
 alpha(int i)
 {
 x = i;
 cout << “alpha initialized \n”;
 }
 void show x(void)
 { cout << “x =” << x << “\n”; }
 };
 class beta
 {
 float y;
 public:
 beta(float j)
 {
 y = j;

Vidyalankar : S.Y. Diploma OOP

- 20 -

 cout << “beta initialized \n”;
 }
 void show_y(void)
 { cout << “y = “ << y << “\n”;}
 };
 class gamma: public beta, public alpha
 {
 int m, n;
 public:
 gamma(int a, float b, int c, int d):
 alph(a), beta(b)
 {
 m = c;
 n = d;
 cout << “gama initialized \n”;
 }
 void show_mn(void)
 {
 cout << “m = “ << m << “\n”
 << “n = “ << n << “\n”;
 }
 };
 int main()
 {
 gamma g (, 10, 75, 20, 30);
 cout << “\n”;
 g.show_x();
 g.show_y();
 g.show_mn();
 return 0;
 }

Q.6(c) Explain arithmetic operations on pointers. Write a C++ Program to

show these operations.
[6]

Ans.: There are a substantial number of arithmetic operations that can be
performed with pointers. C++ allows pointers to perform the following
arithmetic operations:

 A pointer can be incremented (++) (or) decremented ()
 Any integer can be added to or subtracted from a pointer
 One pointer can be subtracted from another

Prelim Question Paper Solution

- 21 -

 #include <iostream.h>
 #include <conio.h>
 void main()
 {
 int num � = (56, 75, 22, 18, 90);
 int *ptr;
 int i;
 clrscr();
 cout << “The array values are:\n”;
 for(i – 0; i < 5; i++)
 cout << num [i] << “\n”;
 /* Initializing the base address of str to ptr*/ ptr num;
 /* Printing the value in the array */
 cout << “\nValue of ptr : “<< *ptr;
 cout << “\n”;
 ptr++;
 cout << “\nValue of ptr++ : :<<*ptr;
 cout << “\n”;
 ptr ;
 cout << “\nValue of ptr : “<<*ptr;
 cout << “\n”;
 ptr = ptr +2;
 cout << “\nValue of ptr+2 : “<<*ptr;
 cout << “\n”;
 ptr = ptr – 1;
 cout << “\nValue of ptr – 1 : “<<*ptr;
 cout << “\n”;
 ptr+ = 3;
 cout << “\nValue of ptr+ - 3 : “<<*ptr;
 ptr - = 2;
 cout << “\n”;
 cout <<”\nValue of ptr - = 2: “<<*ptr;
 cout << “\n”;
 getch();

